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Abstract. By applying Lieb’s spin-reflection-positivity method and exploiting a commutation
relation satisfied by the negatié-Hubbard Hamiltonian, we prove two rigorous theorems on
the binding energy of fermions, the one-particle and the two-particle gaps for the model on an
arbitrary finite lattice.

In the study of condensed matter physics, superconductivity has always been a focus of
physicists’ interest. Its beauty has also fascinated many mathematical physicists. Since
Bardeen, Cooper and Schrieffer introduced their extremely successful (BCS) theory on
superconductivity [1], great efforts have been made to justify this variational theory on
a more rigorous basis [2—8]. For example, in a recent paper [9], Bursill and Thompson
showed that, under some very general conditions, the free energy density calculated by the
BCS variational scheme is actually exact in the thermodynamic limit.

After the discovery of high-temperature superconductivity in the rare-earth-based cooper
oxides [10], superconductivity in the narrow-band systems has also attracted great interest
from condensed matter physicists. In this field, the so-called negétiMetbbard model has
been widely used as a phenomenological model [11]. For this model, the main concerns of
physicists are the possible existence of the superfluid off-diagonal, long-range order [12, 13]
in the model and its low-energy excitations [11]. On the other hand, the binding energy of
fermions and the one-particle charged gap have also been discussed by several authors for
the one-dimensional case [14-16], in which the Hubbard model is exactly solvable [17].

In this paper, we shall study the binding energy of fermions and the charged gaps for
the negativey Hubbard model defined on arbitrary d-dimensional lattice. By applying
some recently developed rigorous techniques [18-23], we prove two theorems on these
guantities. They confirm the previous results derived in [14-16] for the one-dimensional
negativet/ Hubbard model. Moreover, we believe that the general approach given in this
paper should also be applicable to other narrow-band superconducting models.

To begin with, we would like to introduce some definitions and useful terminologies.

Take a finited-dimensional latticeA with N, lattice sites. Then, the Hamiltonian of
the negative/ Hubbard model can be written as

Ha(p, —{Ui) = Y tijel,cjo +clyeia) = > Uilniy — )iy — ) @
(i3)

o i€A
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wherec . (cis) is the fermion creation (annihilation) operator which creates (annihilates)
a fermlon with spino at lattice site:. (:j) denotes a pair of lattice sites{z;;} and
U; > 0 are parameters representing the kinetic energy and the on-site attraction of fermions,
respectively. They are allowed to be site-dependeny}. = c;racia and u is the chemical
potential coefficient. In the following, without special notice, we simait assume lattice
A to be bipartite with respect t&l, (i, —{U;}).

It is easy to see thaHA(u, —{U;}) commutes with the total up-spin and down-spin
fermion number operator$\(¢ and Nw respectively. HereN, = Y ica Nio- Consequently,
the Hilbert space ofi, (u, —{U;}) can be divided into numerous subspa¢€gN,, N)}.
Each of them is characterized by a pair of specific fermion numb&randN,. We define
subspacée/ (N) by

VIN)= Y @V(Ny, Ny). @)
Ny+N,=N

The Hubbard Hamiltonian enjoys the spin symmetry, too. Namély(u, —{U;})

commutes with the spin operatass, S andS defined by

Z(CITC” +chz¢) S = Z(Cchw wciT)

zeA zeA

Z(nzT nW) (3)
1eA
Consequently, botls? and S, are conserved quantities.
Furthermore, if latticeA is bipartite andu = % HA(%, —{U;}) also commutes with the
so-called pseudospin operators [21, 24], which are defined by

N 1 . . A 1 .
J = 5 Ze(z)(c%ci¢ + ciycir) Jy = 5 Ze(z)(c;chL — CiyCip)

€A €A

5 Z(”zT + ni, — 1) (4)
zEA

Here, by definition,A is bipartite in terms of Hamiltonia#/ (u, —{U;}), if it can be split
into two sublatticesA and B, such that fermions can only hop from a site of one sublattice
to a site of another sublattice. Functiefi) is defined bys (1) =1, ifi € A; ande(zi) =
if 2 € B. Itis an easy excise to check that operatd}rsJ and J, satisfy the conventlonal
commutation relations of the angular momentum operators. Therefore,/Baihd J, are
also conserved quantities in this case.

In the following, we shall exploit these symmetries Bf, (v, —{U;}) to prove our
theorems.

For the negativds Hubbard model, one would expect that the fermions are bound by
the attractive interaction into the Cooper pairs. In other words, the ground state of the
negativet/ Hubbard model should be a liquid of the paired fermions with up-spin and
down-spin at the same lattice site. Whenever a pair is broken, extra energy will be needed.
More precisely, if we letEq(N) be the ground-state energy &, (u, —{U;}) in subspace
V(N), we should expect that the following inequality

—Eg = Eo(2N +2) + Eo(2N) — 2Ep(2N +1) <O (5)
hold for any integer O< N < N,. In many-body theoryEg is defined to be the binding

energy of fermions. Furthermore, at thbsoluteground-state energ¥,(2Ny), we should
also expect that the one-particle charged gajs non-vanishing, i.e. inequality

A = Eg(2Ng + 1) + Eg(2Ng — 1) — 2E¢(2Ng) > 0 (6)
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should hold forEq(2Ng). For the negativéd/ Hubbard model defined on a one-dimensional
lattice, these relations have been exactly established [14-16]. Howevef,>fot cases,
only results derived by either the mean-field theories or the numerical calculations on small
size samples are available [11]. In this paper, as the first step of a rigorous investigation,
we shall prove that both inequalities (5) and (6) hold for the negdfiddubbard model on
an arbitraryfinite d-dimensional latticeA.

With these preparations, we now proceed to the statement and proof of our first theorem.

Theorem 1. Let A be an arbitraryfinite lattice with N, sites. Then, for any integer
0 < N < N,, the ground-state energies of the negafive-lubbard Hamiltonian in
subspace¥ (2N + 2), V(2N + 1) and V(2N) satisfy inequality (5).

Proof. To prove this theorem, we shall apply a recently generalized version [20] of Lieb’s
spin-reflection-positivity technique [18-21]. In [20], Lieb and Nachtergaele applied this
method to show the stability of the Peierls instability for ring-shaped molecules. Naturally,
in the following, we shall further tailor this method into a form which is more suitable for
our purpose.

As the first step, we would like to write Hamiltoniahf, (., —{U;}) into a direct product
form of operators acting separately on up-spin and down-spin configurations. To achieve
this purpose, following [20], we introduce the following new fermion operators:

éiT = Cip Eil = (—1)NTCi¢. (7)
Note that the operator;,} now commutewith {¢;;}. ConsequentlyH, (1, —{U;}) can
be written as
Hy(u, —{Ui) =Ty @ [+ 1@ T, = > Uiy — ) ® (sy — ) (C)
€A
where T, = Z(ij) tij(ézaéjg + éj.géi(,) and | is the identity operator. Each operator in (8)
acts on a corresponding subspé¢g of fermions with spino.

Next, let us consider the ground-staig,(2N + 1) of H,(u, —{U;}) in subspace
V(2N +1). Since the spin operaton§<sr andS_ commute with the Hamiltonian, by applying
these operators an appropriate number of times, we can always trang§gN + 1) into
a state satisfying the conditioN, — N, = 1. This state is degenerate withy(2N + 1)
and has quantum numbér = % In the following, we shall exclusively us@&y(2N + 1)
to denote this state.

Wavefunction Wy (2N + 1), which has § + 1) up-spin fermions andv down-spin
fermions, can be naturally written as

Wo2N + 1) =D Wonx,h ® 1, ©

m,n

In (9), x7 is a state vector defined by
X = 8,010 (10)

where (i1, ...,iy), M = N+ 1, foroc = 4; M = N, for ¢ = |, denote the positions of
fermions with spino. Apparently, the entire sdt/} gives a natural basis for, (M), the
subspace oM fermions with spino. However, we should note that, if we naively choose
Hy = Vi(N +1) and’H, = V| (N), then the coefficient matrixV = (W,,,) will be an
Cﬁjl x Cy matrix, which is not a square matrix. Mathematically, it is rather difficult
to deal with such a matrix. To avoid this nuisance, we shall choose Kethnd 7 by
Hs = Vo(N) @ V(N + 1). Consequently, the natural basesHn and’?, have the same
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number of state vectors and, hence, maixcan now be written as & x D squarematrix
with D = C + Cy*™*. Explicitly, we have

W:(/glT /\04) (11)

where M is an Cy ™ x C¥ non-zero matrix. For such a square matrix, we have the
following polar factorization theorem in matrix theory [25].

Lemma 1. Let A be ann x n matrix. Then, there are twe x n unitary matricestU, V
and ann x n diagonal semi-positive definite matri¥/ such that

A=UHV Ron = NS and hpy>20m=1...,n. (12)

The proof of this lemma can be found in a standard textbook of matrix theory. For the
reader’'s convenience, we shall give its proof in the appendix.

By the lemma, there exist two unitary matridésV and a diagonal positive semidefinite
matrix H, such thatW = U HV. Consequently\Vo(2N + 1) can be rewritten as

Wo(2N + 1) = Z W X ® 2 = Z UHV )1} ® 3} = Zhﬂ/f; ® ¢ (13)
m,n=1 m, n=1
with
D
v = Z UnXh & =) Vi) (14)
m= n=1

SinceU andV are unitary,{wf} and {4)}} are also orthonormal bases in subspakis
and M, respectively. Furthermore, sing (2N + 1) is an eigenvector of; and N, the
following constraint conditions should hold fdro(2N + 1):

(Wo(2N + )| N4 |Wo(2N + 1)) = Z Z hihy, (W IN|) = N+1 (15)
=10=1

and

(Wo(2N + 1[N} |Wo(2N + 1)) = Z Z hiyhi, (¢, | N ¢,) = N. (16)
=10=1
In both equations (15) and (16), the spin indices are dropped in the sums because, in
each equation, only one species of spin is involved. These conditions will be used in the
following.
In terms of this new form ofto(2N + 1), the ground-state energy &f, (i, —{U;}) in
subspacé/ (2N + 1) is given by

Eo(2N + 1) = (Wo(2N + D)|Ha (i, —{Ui)|Wo(2N + 1))

D
= Y 2L T ) + @ T

=1

D D
-y u; ( SN hihy, (Wl iny — wlwl @) niy, — u|¢,ﬁ>). (17)
=11l

i€EA =1/l=1
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Applying inequality |ab| < %(|a|2 + |b|?) to each term in the last sum and dropping the
spin indices, we obtain

12 . . 12 . .
Eo(2N +1) > > ;hf[WzITIw/) + (Wl T )] + > ;hlz[(¢l|T|¢l> + (T )]

D D
5 2 U3 3 s — ) s = i) )

zeA h=10=1

D D
- Z Ui (Z > " hiyhyy (i lng — wlen,) (@rlni — m«m)). (18)

zeA 11=11=1
Now, we introduce new wavefunctions;, and ¥, by

D D
v = Z hﬂﬁf ® &zi W, = Zhﬂbf ® &f (19)
=1 =1
wherey; and¢, are the complex conjugate ¢f and¢;, respectively. Apparently, we have
(W1]W1) = (W5 W) = Z h? = (Wo(2N + 1)|Wo(2N + 1)) = (20)

SinceT is Hermitian and{n; — w} are real, in terms ofs; and Wy, inequality (18) can be
rewritten as

Eo(2N +1) = 3(WalHa (e, —{UsD W) + (Wl Hy (i, —(Ui)|W2).  (21)

On the other hand, we note thdt; and ¥, are actually wavefunctions in subspaces
V(N+1, N+1)andV (N, N), respectively. For example, by using the constraint condition
(15), we have

(W1| Ny W) = (W [N [Wg) = Z Z hiyhi, (Y, | N [yn,) = N + 1. (22)
=1l=
Therefore, by the variational principle, we obtain
Eo(2N +1) > JEo(2N + 2) + 3 Eo(2N). (23)

Finally, we would like to show that inequality (23) is strict. This will end our proof of
theorem 1.

In proving inequality (23), we used inequalityv| < [u|?> + %[v|?. It becomes an
identity if and only ifu = v holds. Therefore, under the conditiéh > O for anyi € A,
inequality (23) should be strict if one can find a sét /4, l»), such that the following
conditions,

hi, #0 hi, #0 and (Viplni — ) # (b, lni — pldny) (24)
hold simultaneously. In fact, by constraint conditions (15) and (16), we have

ZZZ’W% Ylng — plyy) = N+ 1— uNy

e I1=11=1

#N—puNa =) Z Zhllhzz (Pr,ns — 1lbr,). (25)

i€ 1=11=

This implies that there must be at least one $get;( I2) for which all the above-mentioned
conditions are satisfied. Therefore, inequality (23) is strict. O
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Theorem 1 tells us that, for the negatieHubbard model on dinite lattice, the
binding energyEg of fermions is always positive. Consequently, fermions will be bound
into pairs and each pair of fermions behaves like a hard-core boson. Therefore, for a specific
admissiblex and a finite latticeA, there is an integer & Ny < N, such that@g(2Np) is
the absoluteground state ofd, (i1, —{U;}). On the other hand, by theorem 1 we have

Eo(2No+ 1) + Eo(2No — 1) — 2Eo(2No) > 3[Eo(2No + 2) + Eo(2Np)]
+3[Eo(2No) 4+ Eo(2No — 2)] — 2E(2No)
= 2[E0o(2No + 2) + Eo(2No — 2) — 2Eo(2Np)]. (26)

Note that the right-hand side of this inequality is non-negative by the definitidn @&No).
Therefore, the following corollary of theorem 1 holds.

Corollary.  For a specific admissiblg and a finite latticeA, inequality (6) holds for the
absoluteground statelg(2Ny) of Hx(u, —{U;}). In other words, there is a non-vanishing
one-particle charged gap &5(2Np).

Here, we would like to emphasize that, although we have shown that both the binding
energy of fermions and the one-particle charged gap for the nedgdtidebbard model on
a finite lattice are non-vanishing (both inequalities (5) and (6) are strict), they may tend
to zero in the thermodynamic limit. To exclude this possibility, more careful calculations
on the differences(y,|ni|vy,) — (¢,|nil¢y)|?> are needed. Further investigations on this
problem are being continued.

In the above analysis, we did not assume that the absolute groundisi@sy) is
a Bose-Einstein condensate of the paired fermions. Under this additional assumption,
we can further show that the energy difference in the last line of inequality (26) tends
to zero in the thermodynamic limit. In other words, fy(2Ny) is a superfluid, then
its two-particle excitation gap must be absent in the thermodynamic limit. This is our
second theorem in this paper. To give a more precise statement of this theorem, we need
to introduce the following definition of the off-diagonal long-range order in a superfluid
system.

Definition.  Let (i) be a complex function defined on lattice such that| £ (7)|> = 1.
Let

A 1
O(f) = ——=>_ fli)cicir. (27)

VNA N
An eigenstateV of Hy(u, —{U;}) in V(N) has a momentuny-, off-diagonal long-range
order if and only if there is a constaat> 0 independent ofV, such that inequality

(W[OT(HHO(F)|¥) = aNy (28)

holds for the correlation function af (/) asN, — oo andN/N, — p # 0.

Historically, the concept of off-diagonal, long-range order was proposed by Penrose
and Onsager to characterize a superfluid phase in an interacting boson system [25].
Their definition was later generalized to the fermion systems by Yang [12]. Here, we
follow Yang's definition. WhenA is a d-dimensional simple cubic lattice, functiofi(z)
can be taken asf(¢) = exp(—iq - i), where q is a reciprocal vector of the lattice.
Obviously, operatorO(f) is the Fourier transformation of operatof,c;; and inequality
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(28) implies thatWw is a Bose—Einstein condensate of the Cooper pairs at momentum

q.
With the definition of the off-diagonal long-range order for the negativétubbard
model, we now prove theorem 2.

Theorem 2. Let Wy(2Ny) be the absolute ground state 8f, (., —{U;}) on a finite lattice
A with a specific admissible. Assume that¥o(2Ng) has a momentunf off-diagonal
long-range order ad/y, — oo and 2Vo/Ny — p # 0. Then, the two-particle charged gap
at Eq(2Np) vanishes in the thermodynamic limit. In other words, the limit

N|Im Eo(2Ng + 2) + Eo(2Ng — 2) — Eg(2Ng) =0 (29)
holds under these conditions.

Proof. To prove this theorem, we shall take a general approach, which was used in [22]
and [23] to show the vanishing spin excitation gaps in some strongly correlated fermion
and boson systems. The starting point is the following identity,
(Wo(2No)I[OT (), [Ha (i, —{Us}). O(f)]11Wo(2No))

= ) (Ey — EoNo)[|{Wal O ()| Wo(2No)* + [(W,| O (f)|Wo(2No))I’]

(30)

where{|¥, )} is a complete set of eigenvectors®f (1, —{U;}). By the definition ofO (1),
the left-hand side of identity (30) is equal to

(Wo(2No)[[OT (), [Ha (1. —{U}). O()]1|¥o(2No))
1 -
= v L@+ FOITE (Yo@Nollelyeis

(ig)
el ¢, Wo(2No)) + [ () (Wo(2No) e}, iy + ¢k ey |Wo(2No))]
2Ng — Ny
(1—2w) o
Obviously, the last term on the right-hand side of equation (31) is a quantity(Df &
N, — oo. On the other hand, sincgf(7)|> = 1, the sum on the right-hand side of
equation (31) is bounded above B§/Nx)>-, > |tij||(cjacj(,>|. When {z;;} are short
ranged, it is also a quantity of(@) in the thermodynamic limit. Consequently, the left-hand
side of identity (30) is, at most, a quantity of D asN, — oc.
Next, let us consider the right-hand side of identity (30). It can be rewritten as

Y (Ey — EoNo)[[(W, |0 (f)|Wo(2No)) > + (¥, OT(f)|Wo(2N)) ]

(31)

= Y (E.(2No —2) — Eo(2N)|(¥,,(2No — 2| O (f)|Wo(2No)) |

n

+ Y (En(2No+ 2) — EoNo)) (¥, (2No + 2)| 0T (/)| Wo(@No))* (32)

where)" and)_ represent the partial sums over the states in subspa@s — 2) and
V(2N +2), respectively. Other matrix elements are zero becalg® and O'( f)) are two-
particle annihilation and creation operators. Sidgg2N,) is theabsoluteground state of

Hx (e, —{U;}), each term in the right-hand side of equation (32) is a non-negative quantity.
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By replacingE,,(2No—2)—Eo(2No) andEm(2N0+2)—E0(2N0) with Eo(2Ng—2)— Eo(2Ny)
and Eo(2Ng + 2) — Ep(2Ny) respectively, equation (32) can be further written into an
inequality

> (En — Eo@No)[[(Wa] O ()| Wo(2N0)) > + [(W,| 0T ()| Wo(2N0)) ]
> (Eo(2No — 2) — Eo(2No)) Y (W, O (f)|Wo(2No))I?
+(Eo(2No + 2) — Eo(2N0)) ) _[[(W,| O (f)|Wo(2No))I’]

= (Eo(2No — 2) — Eo(2N0))(Wo(2No)| O (£)O(f)1Wo(2Np))
+(Eo(2No + 2) — Eo(2No)) (Wo(2No) | OT () O (f)|Wo(2No))

= (Eo(2No — 2) + Eo(2No + 2) — Eo(2N))(Wo(2No)| 0T (£) O (f)|Wo(2Np))
+(Eo(2No + 2) — Eo(2No)){(Wo(2No)[[OT(f), O(f)]|Wo(2Np)). (33)

In equation (33), the sums are ol the eigenstates aff, (i, —{U;}), although most of
the matrix elements are actually zero. A little algebra yields

1 N Np — 2N,
(Wo(2No)| Ny — N|Wo(2Ng)) = —~— =29,

A R 1
(Wo(2No)I[O'(f), O (/)] Wo(2No)) = N N

(34)

This is a quantity of @) asN, — oo. Therefore, the product in the last line of inequality
(33) is of 1) in the thermodynamic limit.
By combining equations (30), (31), (33) and (34), we finally obtain

O(1) > (Eo(2No — 2) + Eo(2Ng + 2) — Eo(2No)){(Wo(2No)|OT(£) O (f)|Wo(2No))
> 0. (35)

This holds for any admissible functioyi(z). On the other hand, by the definition of
the off-diagonal long-range order and the assumption of the theorem, for some admissible
function fo(é), the correlation functiofWo(2No)| O ( fo) O (fo)|Wo(2Np)) is a quantity of
O(N,) as Ny, — oo and 2Vp/N, — p # 0. This requires that the energy difference
Eo(2No+2) + Eo(2Ng—2) — Eo(2Np) tends to zero in the thermodynamic limit. Otherwise,
inequality (35) will be eventually violated.

Our proof is accomplished. O

As an explicit illustration of theorem 1 and theorem 2 proved above, let us consider a
special case of the negative-Hubbard model. We assume that the model is defined on
a bipartite lattice A. In this case, as we mentioned at the beginning of this paper, when
= 1, HamiltonianH, (3, —{U;}) commutes with the pseudospin operatdys.J/, and.J..

Furthermore, there is alsoumitary transformationU; defined by

0ICiT01 = ciy lﬁcil U, = e(i)cli (36)
such that, undet/;, we have

OiH, (L, —(U:)) U = Hy (3, (U3) (37)
and

01J.0, =8, U170, =38, U1J.0, =8.. (38)

In the literature,U; is called the partial particle—hole transformation [21, 24].
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As a result of the pseudospin symmetry and the partial particle—hole symmetry, one can
show that the absolute ground states of hlth(3, —{U;}) and H, (3. {U;}) coincide with
their ground states in the half-filled subspadéN = N,) [20,24]. Furthermore, if the
number of the lattice sitesy,, in sublatticeA is not equal to the number of lattice sites,
Ng, in sublatticeB, Lieb [19] showed that the ground staie({U;}) of the positiveU
Hubbard HamiltonianH, (% {U;}) at half-filling has a total spin

S =3|Ns — Ng|. (39)

By applying l}f ! the inverse of the partial particle—hole transformation, these states will be
mapped back onto their counterpatg(—{U;}) for the negative Hubbard Hamiltonian.

These new states have a total pseudospia %|NA — Np| due to the dual relation (38)
between the spin and the pseudospin operators under the partial particle—hole transformation.
Consequently, the absolute ground states of the negétitetbbard model at half-filling

are degenerate and coincide with the ground stateHAo(f%, —{Ui}) in subspace¥ (2N),

2Ny — |[Ng — Np| < 2N < 2N, + |N4y — Ng| [21]. Therefore, for the ground states of

Hy (3. —{U;}) in these subspaces, we have

Eo(2N +2) + Eo(2N — 2) — 2Eo(2N) = 0. (40)

On the other hand, whefW, — Nz| = O(N,), it has been shown that these ground
states have actually both superfluid off-diagonal, long-range order and charge-density-
wave, diagonal, long-range order [26]. In other words, they are supersolid. Apparently,
these previous results are completely consistent with theorem 2. Now, theorem 1 tells us
something more about these states. For each of these states, the binding energy of fermions
and the one-particle charged gap are non-vanishing.

In summary, in this paper, by applying some recently developed techniques, we have
proven two theorems on the binding energy, the one-particle and the two-particle charged
gaps of the negativér Hubbard model on an arbitrary finite lattice.
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Appendix

The polar factorization lemma can be found in a standard textbook in matrix theory. The
following proof of this lemma is given in [27].

Polar Factorization Lemma. Let A be ann x n matrix. Then, there exist twa x n
unitary matricesU and V as well as am x n diagonal positive semidefinite matrix{,
such that

A=UHV. (41)

The matriced/ and V are uniquely determined if and only K is non-singular.
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Proof.  Consider the positive semidefinite matdxX A. Let 42, ..., h? be its eigenvalues
and let €1, ..., x,) be the corresponding orthonormal eigenvectors. Assumehthat 0
forj=1,2,...,kandh; =0for j =k+1,...,n For 1<i, j <k, we have
Az, Ax; 1 1 h?s;;
L ) = T (Amy, Ax) = ——(x, ATAx) = L 42
( hl' hj ) ]’l,‘/’lj( r :I:J) h,’hj (1} 117_/) h,’hj ( )
Consequently, the vectors; = Ax;/h;, for j = 1,...,k, are orthonormal. Take
additionaln — k orthonormal vectorg;..4, . .., 2z, from subspac& *(z4, ..., z), which is

the perpendicular subspace to the subspace spanned by vectars z;. Let X andZ be
the unitary matrices defined by = z; and Z) = z;, whereX") (Z)) represents the
jth column of matrixX (Z). We haveAX") = h;Z), or, with H = diaghy, ..., hy),

AX = ZH. (43)
Now, by lettingU = Z andV = X, we obtain

UHV =ZHX' = AXX' = A. (44)
The lemma is proved. |
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