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Abstract. By applying Lieb’s spin-reflection-positivity method and exploiting a commutation
relation satisfied by the negative-U Hubbard Hamiltonian, we prove two rigorous theorems on
the binding energy of fermions, the one-particle and the two-particle gaps for the model on an
arbitrary finite lattice.

In the study of condensed matter physics, superconductivity has always been a focus of
physicists’ interest. Its beauty has also fascinated many mathematical physicists. Since
Bardeen, Cooper and Schrieffer introduced their extremely successful (BCS) theory on
superconductivity [1], great efforts have been made to justify this variational theory on
a more rigorous basis [2–8]. For example, in a recent paper [9], Bursill and Thompson
showed that, under some very general conditions, the free energy density calculated by the
BCS variational scheme is actually exact in the thermodynamic limit.

After the discovery of high-temperature superconductivity in the rare-earth-based cooper
oxides [10], superconductivity in the narrow-band systems has also attracted great interest
from condensed matter physicists. In this field, the so-called negative-U Hubbard model has
been widely used as a phenomenological model [11]. For this model, the main concerns of
physicists are the possible existence of the superfluid off-diagonal, long-range order [12, 13]
in the model and its low-energy excitations [11]. On the other hand, the binding energy of
fermions and the one-particle charged gap have also been discussed by several authors for
the one-dimensional case [14–16], in which the Hubbard model is exactly solvable [17].

In this paper, we shall study the binding energy of fermions and the charged gaps for
the negative-U Hubbard model defined on anarbitrary d-dimensional lattice. By applying
some recently developed rigorous techniques [18–23], we prove two theorems on these
quantities. They confirm the previous results derived in [14–16] for the one-dimensional
negative-U Hubbard model. Moreover, we believe that the general approach given in this
paper should also be applicable to other narrow-band superconducting models.

To begin with, we would like to introduce some definitions and useful terminologies.
Take a finited-dimensional lattice3 with N3 lattice sites. Then, the Hamiltonian of

the negative-U Hubbard model can be written as

H3(µ,−{Ui}) =
∑
σ

∑
〈ij〉

tij(c
†
iσ cjσ + c†jσ ciσ )−

∑
i∈3

Ui(ni↑ − µ)(ni↓ − µ) (1)
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where c†iσ (ciσ ) is the fermion creation (annihilation) operator which creates (annihilates)
a fermion with spinσ at lattice sitei. 〈ij〉 denotes a pair of lattice sites.{tij} and
Ui > 0 are parameters representing the kinetic energy and the on-site attraction of fermions,
respectively. They are allowed to be site-dependent.niσ = c†iσ ciσ andµ is the chemical
potential coefficient. In the following, without special notice, we shallnot assume lattice
3 to be bipartite with respect toH3(µ,−{Ui}).

It is easy to see thatH3(µ,−{Ui}) commutes with the total up-spin and down-spin
fermion number operators,̂N↑ andN̂↓, respectively. Here,̂Nσ =

∑
i∈3 niσ . Consequently,

the Hilbert space ofH3(µ,−{Ui}) can be divided into numerous subspaces{V (N↑, N↓)}.
Each of them is characterized by a pair of specific fermion numbers,N↑ andN↓. We define
subspaceV (N) by

V (N) =
∑

N↑+N↓=N
⊕V (N↑, N↓). (2)

The Hubbard Hamiltonian enjoys the spin symmetry, too. Namely,H3(µ,−{Ui})
commutes with the spin operatorsŜx , Ŝy and Ŝz defined by

Ŝx = 1

2

∑
i∈3
(c
†
i↑ci↓ + c†i↓ci↑) Ŝy = 1

2i

∑
i∈3
(c
†
i↑ci↓ − c†i↓ci↑)

Ŝz = 1

2

∑
i∈3
(ni↑ − ni↓). (3)

Consequently, bothS2 andSz are conserved quantities.
Furthermore, if lattice3 is bipartite andµ = 1

2, H3( 1
2,−{Ui}) also commutes with the

so-called pseudospin operators [21, 24], which are defined by

Ĵx = 1

2

∑
i∈3

ε(i)(c
†
i↑c
†
i↓ + ci↓ci↑) Ĵy = 1

2i

∑
i∈3

ε(i)(c
†
i↑c
†
i↓ − ci↓ci↑)

Ĵz = 1

2

∑
i∈3
(ni↑ + ni↓ − 1). (4)

Here, by definition,3 is bipartite in terms of HamiltonianH3(µ,−{Ui}), if it can be split
into two sublattices,A andB, such that fermions can only hop from a site of one sublattice
to a site of another sublattice. Functionε(i) is defined byε(i) = 1, if i ∈ A; andε(i) = −1,
if i ∈ B. It is an easy excise to check that operatorsĴx , Ĵy and Ĵz satisfy the conventional
commutation relations of the angular momentum operators. Therefore, bothJ 2 andJz are
also conserved quantities in this case.

In the following, we shall exploit these symmetries ofH3(µ,−{Ui}) to prove our
theorems.

For the negative-U Hubbard model, one would expect that the fermions are bound by
the attractive interaction into the Cooper pairs. In other words, the ground state of the
negative-U Hubbard model should be a liquid of the paired fermions with up-spin and
down-spin at the same lattice site. Whenever a pair is broken, extra energy will be needed.
More precisely, if we letE0(N) be the ground-state energy ofH3(µ,−{Ui}) in subspace
V (N), we should expect that the following inequality

−EB ≡ E0(2N + 2)+ E0(2N)− 2E0(2N + 1) < 0 (5)

hold for any integer 0< N < N3. In many-body theory,EB is defined to be the binding
energy of fermions. Furthermore, at theabsoluteground-state energyE0(2N0), we should
also expect that the one-particle charged gap1 is non-vanishing, i.e. inequality

1 ≡ E0(2N0+ 1)+ E0(2N0− 1)− 2E0(2N0) > 0 (6)
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should hold forE0(2N0). For the negative-U Hubbard model defined on a one-dimensional
lattice, these relations have been exactly established [14–16]. However, ford > 1 cases,
only results derived by either the mean-field theories or the numerical calculations on small
size samples are available [11]. In this paper, as the first step of a rigorous investigation,
we shall prove that both inequalities (5) and (6) hold for the negative-U Hubbard model on
an arbitraryfinite d-dimensional lattice3.

With these preparations, we now proceed to the statement and proof of our first theorem.

Theorem 1. Let 3 be an arbitraryfinite lattice with N3 sites. Then, for any integer
0 < N < N3, the ground-state energies of the negative-U Hubbard Hamiltonian in
subspacesV (2N + 2), V (2N + 1) andV (2N) satisfy inequality (5).

Proof. To prove this theorem, we shall apply a recently generalized version [20] of Lieb’s
spin-reflection-positivity technique [18–21]. In [20], Lieb and Nachtergaele applied this
method to show the stability of the Peierls instability for ring-shaped molecules. Naturally,
in the following, we shall further tailor this method into a form which is more suitable for
our purpose.

As the first step, we would like to write HamiltonianH3(µ,−{Ui}) into a direct product
form of operators acting separately on up-spin and down-spin configurations. To achieve
this purpose, following [20], we introduce the following new fermion operators:

ĉi↑ ≡ ci↑ ĉi↓ ≡ (−1)N̂↑ci↓. (7)

Note that the operators{ĉi↓} now commutewith {ĉi↑}. Consequently,H3(µ,−{Ui}) can
be written as

H3(µ,−{Ui}) = T̂↑ ⊗ Î + Î ⊗ T̂↓ −
∑
i∈3

Ui(n̂i↑ − µ)⊗ (n̂i↓ − µ) (8)

whereT̂σ =
∑
〈ij〉 tij(ĉ

†
iσ ĉjσ + ĉ†jσ ĉiσ ) and Î is the identity operator. Each operator in (8)

acts on a corresponding subspaceHσ of fermions with spinσ .
Next, let us consider the ground-state90(2N + 1) of H3(µ,−{Ui}) in subspace

V (2N+1). Since the spin operatorŝS+ andŜ− commute with the Hamiltonian, by applying
these operators an appropriate number of times, we can always transform90(2N + 1) into
a state satisfying the conditionN↑ − N↓ = 1. This state is degenerate with90(2N + 1)
and has quantum numberSz = 1

2. In the following, we shall exclusively use90(2N + 1)
to denote this state.

Wavefunction90(2N + 1), which has (N + 1) up-spin fermions andN down-spin
fermions, can be naturally written as

90(2N + 1) =
∑
m,n

Wmnχ
↑
m ⊗ χ↓n . (9)

In (9), χσk is a state vector defined by

χσk ≡ ĉ†i1σ · · · ĉ
†
iMσ
|0〉 (10)

where(i1, . . . , iM), M = N + 1, for σ = ↑; M = N , for σ = ↓, denote the positions of
fermions with spinσ . Apparently, the entire set{χσk } gives a natural basis forVσ (M), the
subspace ofM fermions with spinσ . However, we should note that, if we naively choose
H↑ = V↑(N + 1) andH↓ = V↓(N), then the coefficient matrixW = (Wmn) will be an
CN+1
N3
× CNN3 matrix, which is not a square matrix. Mathematically, it is rather difficult

to deal with such a matrix. To avoid this nuisance, we shall choose bothH↑ andH↓ by
Hσ = Vσ (N)⊕ Vσ (N + 1). Consequently, the natural bases inH↑ andH↓ have the same
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number of state vectors and, hence, matrixW can now be written as aD×D squarematrix
with D = CNN3 + CN+1

N3
. Explicitly, we have

W =
(
O M
M† O

)
(11)

whereM is an CN+1
N3
× CNN3 non-zero matrix. For such a square matrix, we have the

following polar factorization theorem in matrix theory [25].

Lemma 1. Let A be ann× n matrix. Then, there are twon× n unitary matricesU , V
and ann× n diagonal semi-positive definite matrixH such that

A = UHV hmn = hmδmn and hm > 0, m = 1, . . . , n. (12)

The proof of this lemma can be found in a standard textbook of matrix theory. For the
reader’s convenience, we shall give its proof in the appendix.

By the lemma, there exist two unitary matricesU , V and a diagonal positive semidefinite
matrixH , such thatW = UHV . Consequently,90(2N + 1) can be rewritten as

90(2N + 1) =
D∑

m,n=1

Wmnχ
↑
m ⊗ χ↓n =

D∑
m, n=1

(UHV )mnχ
↑
m ⊗ χ↓n =

D∑
l=1

hlψ
↑
l ⊗ φ↓l (13)

with

ψ
↑
l =

D∑
m=1

Umlχ
↑
m φ

↓
l =

D∑
n=1

Vlnχ
↓
n . (14)

SinceU and V are unitary,{ψ↑l } and {φ↓l } are also orthonormal bases in subspacesH↑
andH↓, respectively. Furthermore, since90(2N + 1) is an eigenvector of̂N↑ andN̂↓, the
following constraint conditions should hold for90(2N + 1):

〈90(2N + 1)|N̂↑|90(2N + 1)〉 =
D∑
l1=1

D∑
l2=1

hl1hl2〈ψl2|N̂ |ψl1〉 = N + 1 (15)

and

〈90(2N + 1)|N̂↓|90(2N + 1)〉 =
D∑
l1=1

D∑
l2=1

hl1hl2〈φl2|N̂ |φl1〉 = N. (16)

In both equations (15) and (16), the spin indices are dropped in the sums because, in
each equation, only one species of spin is involved. These conditions will be used in the
following.

In terms of this new form of90(2N + 1), the ground-state energy ofH3(µ,−{Ui}) in
subspaceV (2N + 1) is given by

E0(2N + 1) = 〈90(2N + 1)|H3(µ,−{Ui})|90(2N + 1)〉

=
D∑
l=1

h2
l [〈ψ↑l |T̂↑|ψ↑l 〉 + 〈φ↓l |T̂↓|φ↓l 〉]

−
∑
i∈3

Ui

( D∑
l1=1

D∑
l2=1

hl1hl2〈ψ↑l2 |ni↑ − µ|ψ
↑
l1
〉〈φ↓l2|ni↓ − µ|φ

↓
l1
〉
)
. (17)
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Applying inequality |ab| 6 1
2(|a|2 + |b|2) to each term in the last sum and dropping the

spin indices, we obtain

E0(2N + 1) > 1

2

D∑
l=1

h2
l [〈ψl|T̂ |ψl〉 + 〈ψl|T̂ |ψl〉] +

1

2

D∑
l=1

h2
l [〈φl|T̂ |φl〉 + 〈φl|T̂ |φl〉]

−1

2

∑
i∈3

Ui

( D∑
l1=1

D∑
l2=1

hl1hl2〈ψl2|ni − µ|ψl1〉〈ψl2|ni − µ|ψl1〉
)

−1

2

∑
i∈3

Ui

( D∑
l1=1

D∑
l2=1

hl1hl2〈φl2|ni − µ|φl1〉〈φl2|ni − µ|φl1〉
)
. (18)

Now, we introduce new wavefunctions91 and92 by

91 =
D∑
l=1

hlψ
↑
l ⊗ ψ̄↓l 92 =

D∑
l=1

hlφ
↑
l ⊗ φ̄↓l (19)

whereψ̄l andφ̄l are the complex conjugate ofψl andφl , respectively. Apparently, we have

〈91|91〉 = 〈92|92〉 =
D∑
l=1

h2
l = 〈90(2N + 1)|90(2N + 1)〉 = 1. (20)

SinceT̂ is Hermitian and{ni − µ} are real, in terms of91 and92, inequality (18) can be
rewritten as

E0(2N + 1) > 1
2〈91|H3(µ,−{Ui})|91〉 + 1

2〈92|H3(µ,−{Ui})|92〉. (21)

On the other hand, we note that91 and 92 are actually wavefunctions in subspaces
V (N+1, N+1) andV (N,N), respectively. For example, by using the constraint condition
(15), we have

〈91|N̂↑|91〉 = 〈91|N̂↓|91〉 =
D∑
l1=1

D∑
l2=1

hl1hl2〈ψl2|N̂ |ψl1〉 = N + 1. (22)

Therefore, by the variational principle, we obtain

E0(2N + 1) > 1
2E0(2N + 2)+ 1

2E0(2N). (23)

Finally, we would like to show that inequality (23) is strict. This will end our proof of
theorem 1.

In proving inequality (23), we used inequality|uv| 6 1
2|u|2 + 1

2|v|2. It becomes an
identity if and only if u = v holds. Therefore, under the conditionUi > 0 for any i ∈ 3,
inequality (23) should be strict if one can find a set (i, l1, l2), such that the following
conditions,

hl1 6= 0 hl2 6= 0 and 〈ψl2|ni − µ|ψl1〉 6= 〈φl2|ni − µ|φl1〉 (24)

hold simultaneously. In fact, by constraint conditions (15) and (16), we have∑
i∈3

D∑
l1=1

D∑
l2=1

hl1hl2〈ψl2|ni − µ|ψl1〉 = N + 1− µN3

6= N − µN3 =
∑
i∈3

D∑
l1=1

D∑
l2=1

hl1hl2〈φl2|ni − µ|φl2〉. (25)

This implies that there must be at least one set (i, l1, l2) for which all the above-mentioned
conditions are satisfied. Therefore, inequality (23) is strict. �
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Theorem 1 tells us that, for the negative-U Hubbard model on afinite lattice, the
binding energyEB of fermions is always positive. Consequently, fermions will be bound
into pairs and each pair of fermions behaves like a hard-core boson. Therefore, for a specific
admissibleµ and a finite lattice3, there is an integer 0< N0 < N3 such that90(2N0) is
the absoluteground state ofH3(µ,−{Ui}). On the other hand, by theorem 1 we have

E0(2N0+ 1)+ E0(2N0− 1)− 2E0(2N0) >
1
2[E0(2N0+ 2)+ E0(2N0)]

+ 1
2[E0(2N0)+ E0(2N0− 2)] − 2E0(2N0)

= 1
2[E0(2N0+ 2)+ E0(2N0− 2)− 2E0(2N0)]. (26)

Note that the right-hand side of this inequality is non-negative by the definition of90(2N0).
Therefore, the following corollary of theorem 1 holds.

Corollary. For a specific admissibleµ and a finite lattice3, inequality (6) holds for the
absoluteground state90(2N0) of H3(µ,−{Ui}). In other words, there is a non-vanishing
one-particle charged gap atE0(2N0).

Here, we would like to emphasize that, although we have shown that both the binding
energy of fermions and the one-particle charged gap for the negative-U Hubbard model on
a finite lattice are non-vanishing (both inequalities (5) and (6) are strict), they may tend
to zero in the thermodynamic limit. To exclude this possibility, more careful calculations
on the differences|〈ψl2|ni|ψl1〉 − 〈φl2|ni|φl1〉|2 are needed. Further investigations on this
problem are being continued.

In the above analysis, we did not assume that the absolute ground state90(2N0) is
a Bose–Einstein condensate of the paired fermions. Under this additional assumption,
we can further show that the energy difference in the last line of inequality (26) tends
to zero in the thermodynamic limit. In other words, if90(2N0) is a superfluid, then
its two-particle excitation gap must be absent in the thermodynamic limit. This is our
second theorem in this paper. To give a more precise statement of this theorem, we need
to introduce the following definition of the off-diagonal long-range order in a superfluid
system.

Definition. Let f (i) be a complex function defined on lattice3 such that|f (i)|2 = 1.
Let

Ô(f ) ≡ 1√
N3

∑
i∈3

f (i)ci↓ci↑. (27)

An eigenstate9 of H3(µ,−{Ui}) in V (N) has a momentum-f , off-diagonal long-range
order if and only if there is a constantα > 0 independent ofN3 such that inequality

〈9|Ô†(f )Ô(f )|9〉 > αN3 (28)

holds for the correlation function of̂O(f ) asN3→∞ andN/N3→ ρ 6= 0.

Historically, the concept of off-diagonal, long-range order was proposed by Penrose
and Onsager to characterize a superfluid phase in an interacting boson system [25].
Their definition was later generalized to the fermion systems by Yang [12]. Here, we
follow Yang’s definition. When3 is a d-dimensional simple cubic lattice, functionf (i)
can be taken asf (i) = exp(−iq · i), where q is a reciprocal vector of the lattice.
Obviously, operatorÔ(f ) is the Fourier transformation of operatorci↓ci↑ and inequality
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(28) implies that9 is a Bose–Einstein condensate of the Cooper pairs at momentum
q.

With the definition of the off-diagonal long-range order for the negative-U Hubbard
model, we now prove theorem 2.

Theorem 2. Let 90(2N0) be the absolute ground state ofH3(µ,−{Ui}) on a finite lattice
3 with a specific admissibleµ. Assume that90(2N0) has a momentum-f , off-diagonal
long-range order asN3 →∞ and 2N0/N3 → ρ 6= 0. Then, the two-particle charged gap
at E0(2N0) vanishes in the thermodynamic limit. In other words, the limit

lim
N3→∞

E0(2N0+ 2)+ E0(2N0− 2)− E0(2N0) = 0 (29)

holds under these conditions.

Proof. To prove this theorem, we shall take a general approach, which was used in [22]
and [23] to show the vanishing spin excitation gaps in some strongly correlated fermion
and boson systems. The starting point is the following identity,

〈90(2N0)|[Ô†(f ), [H3(µ,−{Ui}), Ô(f )]] |90(2N0)〉
=
∑
n

(En − E0(2N0))[|〈9n|Ô(f )|90(2N0)〉|2+ |〈9n|Ô†(f )|90(2N0)〉|2]

(30)

where{|9n〉} is a complete set of eigenvectors ofH3(µ,−{Ui}). By the definition ofÔ(f ),
the left-hand side of identity (30) is equal to

〈90(2N0)|[Ô†(f ), [H3(µ,−{Ui}), Ô(f )]] |90(2N0)〉
= 1

N3

∑
〈ij〉
(−tij)[f (i)+ f (j)][f (i)〈90(2N0)|c†i↑cj↑

+c†i↓cj↓|90(2N0)〉 + f (j)〈90(2N0)|c†j↑ci↑ + c†j↓ci↓|90(2N0)〉]

−(1− 2µ)
2N0−N3

N3
. (31)

Obviously, the last term on the right-hand side of equation (31) is a quantity of O(1) as
N3 → ∞. On the other hand, since|f (i)|2 = 1, the sum on the right-hand side of
equation (31) is bounded above by(8/N3)

∑
σ

∑
〈ij〉 |tij ||〈c†iσ cjσ 〉|. When {tij} are short

ranged, it is also a quantity of O(1) in the thermodynamic limit. Consequently, the left-hand
side of identity (30) is, at most, a quantity of O(1) asN3→∞.

Next, let us consider the right-hand side of identity (30). It can be rewritten as∑
n

(En − E0(2N0))[|〈9n|Ô(f )|90(2N0)〉|2+ |〈9n|Ô†(f )|90(2N0)〉|2]

=
∑
n

′
(En(2N0− 2)− E0(2N0))|〈9n(2N0− 2)|Ô(f )|90(2N0)〉|2

+
∑
m

′
(Em(2N0+ 2)− E0(2N0))|〈9m(2N0+ 2)|Ô†(f )|90(2N0)〉|2 (32)

where
∑′

n and
∑′

m represent the partial sums over the states in subspacesV (2N − 2) and
V (2N+2), respectively. Other matrix elements are zero becauseÔ(f ) andÔ†(f )) are two-
particle annihilation and creation operators. Since90(2N0) is theabsoluteground state of
H3(µ,−{Ui}), each term in the right-hand side of equation (32) is a non-negative quantity.
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By replacingEn(2N0−2)−E0(2N0) andEm(2N0+2)−E0(2N0) with E0(2N0−2)−E0(2N0)

and E0(2N0 + 2) − E0(2N0) respectively, equation (32) can be further written into an
inequality∑
n

(En − E0(2N0))[|〈9n|Ô(f )|90(2N0)〉|2+ |〈9n|Ô†(f )|90(2N0)〉|2]

> (E0(2N0− 2)− E0(2N0))
∑
n

|〈9n|Ô(f )|90(2N0)〉|2

+(E0(2N0+ 2)− E0(2N0))
∑
m

[|〈9m|Ô†(f )|90(2N0)〉|2]

= (E0(2N0− 2)− E0(2N0))〈90(2N0)|Ô†(f )Ô(f )|90(2N0)〉
+(E0(2N0+ 2)− E0(2N0))〈90(2N0)|Ô†(f )Ô(f )|90(2N0)〉
= (E0(2N0− 2)+ E0(2N0+ 2)− E0(2N0))〈90(2N0)|Ô†(f )Ô(f )|90(2N0)〉
+(E0(2N0+ 2)− E0(2N0))〈90(2N0)|[Ô†(f ), Ô(f )]|90(2N0)〉. (33)

In equation (33), the sums are overall the eigenstates ofH3(µ,−{Ui}), although most of
the matrix elements are actually zero. A little algebra yields

〈90(2N0)|[Ô†(f ), Ô(f )]|90(2N0)〉 = 1

N3
〈90(2N0)|N3 − N̂ |90(2N0)〉 = N3 − 2N0

N3
.

(34)

This is a quantity of O(1) asN3→∞. Therefore, the product in the last line of inequality
(33) is of O(1) in the thermodynamic limit.

By combining equations (30), (31), (33) and (34), we finally obtain

O(1) > (E0(2N0− 2)+ E0(2N0+ 2)− E0(2N0))〈90(2N0)|Ô†(f )Ô(f )|90(2N0)〉
> 0. (35)

This holds for any admissible functionf (i). On the other hand, by the definition of
the off-diagonal long-range order and the assumption of the theorem, for some admissible
function f0(i), the correlation function〈90(2N0)|Ô†(f0)Ô(f0)|90(2N0)〉 is a quantity of
O(N3) asN3 → ∞ and 2N0/N3 → ρ 6= 0. This requires that the energy difference
E0(2N0+2)+E0(2N0−2)−E0(2N0) tends to zero in the thermodynamic limit. Otherwise,
inequality (35) will be eventually violated.

Our proof is accomplished. �

As an explicit illustration of theorem 1 and theorem 2 proved above, let us consider a
special case of the negative-U Hubbard model. We assume that the model is defined on
a bipartite lattice3. In this case, as we mentioned at the beginning of this paper, when
µ = 1

2, HamiltonianH3
(

1
2,−{Ui}

)
commutes with the pseudospin operatorsĴx , Ĵy andĴz.

Furthermore, there is also aunitary transformationÛ1 defined by

Û
†
1ci↑Û1 = ci↑ Û

†
1ci↓Û1 = ε(i)c†i↓ (36)

such that, under̂U1, we have

Û
†
1H3

(
1
2,−{Ui}

)
Û1 = H3

(
1
2, {Ui}

)
(37)

and

Û
†
1 ĴxÛ1 = Ŝx Û

†
1 ĴyÛ1 = Ŝy Û

†
1 ĴzÛ1 = Ŝz. (38)

In the literature,Û1 is called the partial particle–hole transformation [21, 24].
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As a result of the pseudospin symmetry and the partial particle–hole symmetry, one can
show that the absolute ground states of bothH3

(
1
2,−{Ui}

)
andH3

(
1
2, {Ui}

)
coincide with

their ground states in the half-filled subspaceV (N = N3) [20, 24]. Furthermore, if the
number of the lattice sites,NA, in sublatticeA is not equal to the number of lattice sites,
NB , in sublatticeB, Lieb [19] showed that the ground state90({Ui}) of the positive-U
Hubbard HamiltonianH3

(
1
2, {Ui}

)
at half-filling has a total spin

S = 1
2|NA −NB |. (39)

By applyingÛ−1
1 , the inverse of the partial particle–hole transformation, these states will be

mapped back onto their counterparts90(−{Ui}) for the negative-U Hubbard Hamiltonian.
These new states have a total pseudospinJ = 1

2|NA − NB | due to the dual relation (38)
between the spin and the pseudospin operators under the partial particle–hole transformation.
Consequently, the absolute ground states of the negative-U Hubbard model at half-filling
are degenerate and coincide with the ground states ofH3

(
1
2,−{Ui}

)
in subspacesV (2N),

2N3 − |NA − NB | 6 2N 6 2N3 + |NA − NB | [21]. Therefore, for the ground states of
H3

(
1
2,−{Ui}

)
in these subspaces, we have

E0(2N + 2)+ E0(2N − 2)− 2E0(2N) ≡ 0. (40)

On the other hand, when|NA − NB | = O(N3), it has been shown that these ground
states have actually both superfluid off-diagonal, long-range order and charge-density-
wave, diagonal, long-range order [26]. In other words, they are supersolid. Apparently,
these previous results are completely consistent with theorem 2. Now, theorem 1 tells us
something more about these states. For each of these states, the binding energy of fermions
and the one-particle charged gap are non-vanishing.

In summary, in this paper, by applying some recently developed techniques, we have
proven two theorems on the binding energy, the one-particle and the two-particle charged
gaps of the negative-U Hubbard model on an arbitrary finite lattice3.
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Appendix

The polar factorization lemma can be found in a standard textbook in matrix theory. The
following proof of this lemma is given in [27].

Polar Factorization Lemma. Let A be ann × n matrix. Then, there exist twon × n
unitary matricesU andV as well as ann × n diagonal positive semidefinite matrixH ,
such that

A = UHV. (41)

The matricesU andV are uniquely determined if and only ifA is non-singular.
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Proof. Consider the positive semidefinite matrixA†A. Let h2
1, . . . , h

2
n be its eigenvalues

and let (x1, . . . ,xn) be the corresponding orthonormal eigenvectors. Assume thathj > 0
for j = 1, 2, . . . , k andhj = 0 for j = k + 1, . . . , n. For 16 i, j 6 k, we have(

Axi

hi
,
Axj

hj

)
= 1

hihj
(Axi , Axj ) = 1

hihj
(xi , A

†Axj ) =
h2
j δij

hihj
. (42)

Consequently, the vectorszj = Axj /hj , for j = 1, . . . , k, are orthonormal. Take
additionaln− k orthonormal vectorszk+1, . . . ,zn from subspaceV ⊥(z1, . . . ,zk), which is
the perpendicular subspace to the subspace spanned by vectorsz1, . . . ,zk. LetX andZ be
the unitary matrices defined byX(j) = xj andZ(j) = zj , whereX(j) (Z(j)) represents the
j th column of matrixX (Z). We haveAX(j) = hjZ(j), or, withH = diag(h1, . . . , hn),

AX = ZH. (43)

Now, by lettingU = Z andV = X†, we obtain

UHV = ZHX† = AXX† = A. (44)

The lemma is proved. �
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